본문 바로가기

Logistic Regression4

Logistic Regression 예제(iris classification) (Tensorflow v2.1.0) 이번 게시글에서는 머신러닝 입문에서 자주 사용되는 sklearn.dataset에 있는 iris dataset을 사용해서 붓꽃을 분류해보도록 하겠습니다. 먼저 필요한 package들을 import를 하고 시작해보도록 하겠습니다. import sklearn.datasets import tensorflow as tf import numpy as np import pandas as pd import matplotlib.pyplot as plt 1. Dataset 준비 iris dataset은 sklearn에서 제공하는 데이터를 사용할 것입니다. 아래처럼 iris 데이터를 읽어오고, pandas DataFrame를 생성해서, 데이터가 어떻게 구성되어 있는지 살펴봅니다. iris.. 2020. 11. 13.
[실습] Logistic Regression with a Neural Network(can / non-cat classifier) 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 첫 번째 강의 Neural Networks and Deep Learning를 듣고 정리한 내용입니다. (Week 2) 딥러닝 특화과정 첫 번째 강의 2주차 실습을 진행하면서 복습해보려고 합니다. 목표는 Logistic Regression을 사용해서 고양이를 인식하는 분류기를 만드는 것입니다. 진행 순서는 다음과 같습니다. 1. 파라미터 초기화 2. Cost Function과 Gradient 계산 3. Gradient Descent를 통해서 최적화 우리는 이 3가지의 동작을 하는 함수를 각각 만들고, 마지막에 위 함수들을 main model에서 사용할 것입니다. 1. Packages 이 분류기에서 사용되는.. 2020. 9. 24.
[Machine Learning] Logistic Regression 2 (Cost Function, Gradient Descent, Multi-Class Classification) 해당 내용은 Andrew Ng 교수님의 Machine Learning 강의(Coursera)를 정리한 내용입니다. 이번 글에서는 이어서 Logistic Regression의 Cost Function, Gradient Descent, Multi-Class Classification에 대해서 알아볼 것이다. [Cost Function] 이제 Logicstic Regression를 하기 위해서 필요한 \(theta\) 를 구하는 방법에 대해 알아보자. 앞에서 배웠던 Linear Regression을 위한 비용함수(Cost Function)은 \(J(\theta) = \frac{1}{2m}\sum_{i = 1}^{m}(h_\theta(x^{(i)}) - y^{(i)})\) 이며, 우리는 아래와 같이 표현할 수도.. 2020. 8. 7.
[Machine Learning] Logistic Regression 1 해당 내용은 Andrew Ng 교수님의 Machine Learning 강의(Coursera)를 정리한 내용입니다. - Logistic Regression 로지스틱 회귀 이번 글과 다음 글은 classification(분류) 문제에서 주어진 data들을 discrete value(class)로 분류하기 위한 방법에 대해서 알아볼 것이다. 원하는 결과값 y는 분류된 class들 중에 하나에 속하게 된다. 분류(Classification)의 예시는 다음과 같다. - Email : Spam or Not Spam ? - Online Transactions : Fraudulent (Yes / No) ? - 온라인 거래 : 사기인지 아닌지 - Tumor : Malignant / Benign ? - 악성/양성 종양 위.. 2020. 8. 7.