Andrew Ng56 Sequence models & Attention mechnism / Speech recognition(CTC) 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 다섯 번째 강의 Recurrent Neural Network를 듣고 정리한 내용입니다. (Week 3) Various sequence to sequence architectures [Basic Models] 이번 강의부터는 Sequence-to-sequence 모델에 대해서 배우게 된다. Basic model부터 시작해서 Beam search와 attention model에 대해서 알아보자. 'Jane viste l'Afrique en septembre'라는 프랑스어로 된 문장을 영어 문장으로 변환하고 싶다면, 프랑스어로 된 문장 시퀀스를 \(x^{}\)부터 \(x^{}\)까지 표시하고, \(y^{}\).. 2020. 12. 28. NLP and Word Embeddings: Word2vec & GloVe 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 다섯 번째 강의 Recurrent Neural Network를 듣고 정리한 내용입니다. (Week 2) [Learning word embeddings] 단어 임베딩(Word Embedding) 딥러닝 연구에서 초반에는 비교적 복잡한 알고리즘으로 시작했다. 그리고 시간이 지나면서, 훨씬 더 간단하고 단순한 알고리즘도 가능하고, 특히 큰 데이터셋에서 매우 좋은 결과를 얻을 수 있다는 것을 발견하게 되었다. 최근 가장 인기있는 몇몇의 알고리즘들은 너무 단순해서 마치 마법처럼 보일 수도 있을 정도이다. 단어 임베딩이 어떻게 동작하는지 직관적으로 이해하기 위해서 더 복잡한 알고리즘의 일부를 살펴보도록 하자. La.. 2020. 12. 26. Introduction to Word Embeddings 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 다섯 번째 강의 Recurrent Neural Network를 듣고 정리한 내용입니다. (Week 2) - Introduction to Word Embeddings [Word Representation] 저번주 강의에서 RNN, GRU, LSTM에 대해서 배웠고, 이번주에서는 NLP에 어떤 아이디어들을 적용할 수 있는지 살펴보도록 할 것이다. NLP에서 중요한 아이디어 중의 하나는 Word Embedding(단어 임베딩)이다. 지난 주에 사용했던 1만개의 단어에 대해서 우리는 one-hot encoding을 통해서 단어를 표시했다. 즉, Man은 5391의 index를 갖고 있으며, 10000 dimen.. 2020. 12. 24. Recurrent Neural Networks 1 (Basic of RNN model) 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 다섯 번째 강의 Sequence Models를 듣고 정리한 내용입니다. (Week 1) [Why sequence models] 다섯번째 강의에서는 Sequence model에 대해서 배운다. 딥러닝에서 가장 흥미로운 분야 중 하나이며, Recurrent Neural Network(RNN)같은 모델은 음성 인식, 자연어 처리(NLP) 영역에 영향을 끼쳤다. 아래는 시퀀스 모델이 사용되는 몇 가지 예시들이다. 음성 인식(Speech recognition)의 경우에는 Input X인 오디오가 Text output Y에 매핑된다. 입력과 출력 모두 시퀀스 데이터인데, X는 시간에 따라 재생되는 음성이며, Y는 .. 2020. 12. 20. Neural Style Transfer 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 네 번째 강의 Convolutional Neural Networks를 듣고 정리한 내용입니다. (Week 4) [What is neural style transfer?] Neural Style Transfer는 Convnet으로 구현할 수 있는 흥미로운 어플리케이션 중의 하나이다. 이 네트워크를 통해서 자신만의 예술 작품을 만들 수 있다. 이미지를 새로운 Style로 변형하는 것인데, 원본 이미지(Content)와 변형할 스타일(Style)을 가지고 새로운 Style의 이미지(Generated Image)를 합성하는 것이다. Neural Style Transfer를 구현하려면 ConvNet의 다양한 la.. 2020. 12. 1. Face recognition 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 네 번째 강의 Convolutional Neural Networks를 듣고 정리한 내용입니다. (Week 4) [What is face recognition?] 얼굴 인식 분야에서 세부적으로 얼굴 검증(Verification)과 인식(Recognition)으로 분류된다. Face Verification의 경우에는 사람의 이름이나 ID, 이미지가 주어졌을 때, 이 사람이 맞는가에 대한 여부를 확인한다. 1:1 문제라고도 부르고, 요청한 그 사람이 맞는지 여부를 알게 한다. 반면에 Face Recognition의 경우에는 1:K 문제라고도 하는데, K 명의 database가 있으면 주어진 이미지를 통해서 K.. 2020. 11. 30. Object Detection(YOLO algorithm) 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 네 번째 강의 Convolutional Neural Networks를 듣고 정리한 내용입니다. (Week 3) Learning Objectives Describe the challenges of Object Localization, Object Detection and Landmark Finding Implement non-max suppression to increase accuracy Implement intersection over union Label a dataset for an object detection application Identify the components used for obj.. 2020. 11. 22. CNN (LeNet-5, AlexNet, VGG-16, ResNets, Inception Network) 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 네 번째 강의 Convoluional Neural Network를 듣고 정리한 내용입니다. (Week 2) - Case Studies [Why look at case studies?] 여러 연구/논문에서 CNN의 효과적인 Building Block 구성 방법이 연구되었으며, 이런 예시들을 참고하는 것이 CNN으로 학습할 때 유용하다. 현대 Computer Vision의 토대가 되는 Classic Networks는 아래와 같은 것들이 있다. LeNet-5 AlexNet VGG 그리고, 이번 강의에서 CNN에서 유용하게 사용되는 ResNet or Conv Residual Network와 Inception N.. 2020. 11. 18. Convolutional Neural Networks(CNN) 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 네 번째 강의 Convolutional Neural Networks를 듣고 정리한 내용입니다. (Week 1) Learning Objectives Explain the convolution operation Apply two different types of pooling operation Identify the components used in a convolutional neural network (padding, stride, filter, ...) and their purpose Build and train a ConvNet in TensorFlow for a classification probl.. 2020. 11. 8. ML Strategy 2-2 (Transfer learning, Multi-task learning, End-to-end learning) 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 세 번째 강의 Structuring Machine Learning Projects를 듣고 정리한 내용입니다. (Week 2) - Learning from multiple tasks [Transfer learning] 딥러닝의 강력함은 한 가지 Task에서 학습한 내용은 다른 Task에 적용을 할 수 있다는 것이다. 예를 들어서, Neural Network(NN)이 고양이와 같은 사진을 인식하도록 학습했을 때, 여기서 학습한 것을 가지고 부분적으로 X-ray 이미지를 인식하는데 도움이 되도록 할 수 있다. 이것이 바로 Transfer Learning이라고 한다. 이미지 인식 기능을 NN으로 학습을 했다고 .. 2020. 10. 30. 이전 1 2 3 4 ··· 6 다음