딥러닝14 [실습] Logistic Regression with a Neural Network(can / non-cat classifier) 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 첫 번째 강의 Neural Networks and Deep Learning를 듣고 정리한 내용입니다. (Week 2) 딥러닝 특화과정 첫 번째 강의 2주차 실습을 진행하면서 복습해보려고 합니다. 목표는 Logistic Regression을 사용해서 고양이를 인식하는 분류기를 만드는 것입니다. 진행 순서는 다음과 같습니다. 1. 파라미터 초기화 2. Cost Function과 Gradient 계산 3. Gradient Descent를 통해서 최적화 우리는 이 3가지의 동작을 하는 함수를 각각 만들고, 마지막에 위 함수들을 main model에서 사용할 것입니다. 1. Packages 이 분류기에서 사용되는.. 2020. 9. 24. Practical aspects of Deep Learning 2 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 두 번째 강의 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization를 듣고 정리한 내용입니다. (Week 1) 이어서 optimization problem을 설정하는 것에 대해서 알아보자. - Setting up your optimization problem [Normalizing inputs] 학습속도를 높일 수 있는 방법 중 하나가 입력을 표준화(Normalization)하는 것이다. 두 개의 input이 있는 경우를 살펴보도록하자. 입력을 normalization 하는 방법은 다음과 같이 두 단계로.. 2020. 9. 23. Practical aspects of Deep Learning 1 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 두 번째 강의 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization를 듣고 정리한 내용입니다. (Week 1) 두 번째 강의에서는 어떻게 Neural Network(NN)이 잘 동작하게 할 수 있는 방법에 대해서 알아볼 것이다. Hyper Parameter 튜닝과 Data 세팅까지 다루면서, 학습 알고리즘이 적절한 시간내에 학습이 될 수 있도록 해보자. 1주차에서는 NN을 만드는 것과 Regularization(정규화), 그리고 몇 가지 방법으로 NN이 제대로 구현되었는지 확인하는 방법에 대해서 알아볼 .. 2020. 9. 23. Shallow Neural Networks 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 첫 번째 강의 Neural Networks and Deep Learning를 듣고 정리한 내용입니다. (Week 3) 이번 글에서는 Forward Propagation과 BackPropagation을 사용한 1개의 hidden layer를 가진 Neural Network를 알아보자. [Key Concept] - Understand hidden units and hidden layers - Be able to apply a variety of activation functions in a neural network - Build your first forward and backwarnd propagatio.. 2020. 9. 8. 이전 1 2 다음