ML & DL/tensorflow36 교통 표지판 분류 예제 (tensorflow v2.3.1) 이번에는 위와 같은 교통 표지판을 분류하는 모델을 만들어보겠습니다. 기본 내용은 실전활용! 텐서플로 딥러닝 프로젝트를 참고하였습니다. 분류에 필요한 데이터는 아래 경로에서 다운받으실 수 있습니다. benchmark.ini.rub.de/?section=gtsrb&subsection=dataset#Imageformat German Traffic Sign Benchmarks Dataset Overview Single-image, multi-class classification problem More than 40 classes More than 50,000 images in total Large, lifelike database Reliable ground-truth dat.. 2020. 11. 26. AutoEncoder(오토인코더) - MNIST dataset 사용 MNIST dataset을 사용해서 여러 모델로 오토인코더를 구성해보았습니다. 내용은 아래 사이트를 참조하였습니다. keraskorea.github.io/posts/2018-10-23-keras_autoencoder/ 케라스로 이해하는 Autoencoder Building Autoencoders in Keras keraskorea.github.io AutoEncoder(오터인코더)란 ? 오토인코더는 비지도 방식을 사용해서 데이터코딩을 학습하는데 사용되는 신경망입니다. 단순하게 말하자면 입력을 출력으로 복사하는 신경망인데, 네트워크의 layer를 쌓으면서 데이터를 압축하거나 입력 데이터의 노이즈를 제거해서 깔끔한 이미지로 복원한다거나하는 여러가지 다양한 오토인코더가 있습니다. 모델을 구성할 때 여러가지 제.. 2020. 11. 25. Hand SIGNS 분류 예제 (3) - ResNet (tensorflow v2.3.0) 2020/11/17 - [ML & DL/tensorflow] - Hand SIGNS 분류 예제 (1) Hand SIGNS 분류 예제 (1) (tensorflow v2.3.0) Coursera Deep Learning 특화과정에 실습으로 진행했던 SIGNS dataset을 가지고, 위 이미지와 같이 분류를 해보도록 할 것입니다. Coursera 실습은 tensorflow 1로 진행되는데, 2버전에 맞추.. junstar92.tistory.com 2020/11/17 - [ML & DL/tensorflow] - Hand SIGNS 분류 예제 (2) - CNN 구조 사용 Hand SIGNS 분류 예제 (2) - CNN 구조 사용 (tensorflow v2.3.0) 2020/1.. 2020. 11. 24. MNIST dataset 예제(ConvNet, VGG16) Tensorflow.keras에서 기본으로 제공하는 MNIST dataset을 사용해 CNN 기본 구조와 VGG16구조, 이 두가지를 사용해서 분류해보려고 합니다. 1. Dataset 준비 기본적으로 사용될 package와 MNIST dataset을 읽어옵니다. import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import time (x_train_orig, y_train_orig), (x_test_orig, y_test_orig) = tf.keras.datasets.mnist.load_data() print(f'input shape : {x_train_orig.shape}') print(f'output shape : {.. 2020. 11. 22. Hand SIGNS 분류 예제 (2) - CNN 구조 사용 (tensorflow v2.3.0) 2020/11/17 - [ML & DL/tensorflow] - Hand SIGNS 분류 예제 (1) Hand SIGNS 분류 예제 (1) (tensorflow v2.3.0) Coursera Deep Learning 특화과정에 실습으로 진행했던 SIGNS dataset을 가지고, 위 이미지와 같이 분류를 해보도록 할 것입니다. Coursera 실습은 tensorflow 1로 진행되는데, 2버전에 맞추.. junstar92.tistory.com 이번에는 이전 게시글에서 사용했던 dataset으로 Convolutional Neural Network(ConvNet) 구조로 모델을 구현하고 학습을 해보려고 합니다. 그리고, 이전 게시글에서 언급했듯이 label data를 on.. 2020. 11. 17. Hand SIGNS 분류 예제 (1) (tensorflow v2.3.0) Coursera Deep Learning 특화과정에 실습으로 진행했던 SIGNS dataset을 가지고, 위 이미지와 같이 분류를 해보도록 할 것입니다. Coursera 실습은 tensorflow 1로 진행되는데, 2버전에 맞추어서 한 번 구현해보도록 하겠습니다. 신경망은 이전에 고양이 분류와 같이 입력을 flatten해주고, 2개의 hidden layer를 갖도록 할 것이고, 우리가 구현해야 할 신경망의 구조는 다음과 같습니다. Input -> linear(25 units) -> relu -> linear(12 units) -> relu -> softmax(6 units) 1. Dataset 준비 import tensorflow as tf import numpy as.. 2020. 11. 17. batch GD (with momentum, adam) 비교 (tensorflow v2.3.0 - jupyter notebook) 이번에는 momentum과 adam optimization을 사용해서 mini-batch GD, mini-batch GD with momentum, mini-batch GD with adam, 이 3가지의 학습을 비교해보도록 하겠습니다. mini-batch, momentum, adam에 대해서는 아래 게시글을 참조하시기 바랍니다. 2020/10/02 - [Coursera 강의/Deep Learning] - Optimization(최적화 알고리즘) : Mini-batch/Momentum/RMSprop/Adam Optimization(최적화 알고리즘) : Mini-batch/Momentum/RMSprop/Adam 해당 내용은 Courser.. 2020. 11. 16. Regularization 적용에 따른 학습 비교 (tensorflow v2.3.0 - Colab) 이번에는 Courser Deep Learning 특화과정 2번째 강의 1주차 실습 중에 하나인 Regularization에 대해서 텐서플로우로 다시 살펴보도록 하겠습니다. 2020/09/26 - [Coursera 강의/Deep Learning] - [실습] Regularization(L2 Regularization, Dropout) [실습] Regularization(L2 Regularization, Dropout) 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 두 번째 강의 Improving Deep Neural Networks: Hyperparameter tuning, Regularization .. 2020. 11. 16. Initialization에 따른 학습 비교 (tensorflow v2.1.0 - jupyter notebook) 이번에는 Coursera Deep Learning 특화과정 두번째 강의 1주차에서 실습한 initialization 선택에 따른 학습비교를 tensorflow에서 구현해보도록 하겠습니다. 2020/09/26 - [Coursera 강의/Deep Learning] - [실습] Initialization 초기화 [실습] Initialization 초기화 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 두 번째 강의 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization를 듣고 정리한 내용입.. 2020. 11. 15. Cat Classification (2) : L-layers Neural Network 2020/11/15 - [ML & DL/tensorflow] - Cat Classification (1) : simple neural network Cat Classification (1) : simple neural network 이번에는 Courser Deep learning 특화과정 첫번째강의 2주차 수업에서 실습했던, cat classification을 구현해보도록 하겠습니다. 2020/09/24 - [Coursera 강의/Deep Learning] - [실습] Logistic Regression with.. junstar92.tistory.com 위 글에 이어서 이번에는 L개의 layer를 가지는 Neural Network를 설계해보도록 하겠습니다. 구현은 tf.keras를 통해서 할 예정인데,.. 2020. 11. 15. 이전 1 2 3 4 다음