해당 내용은 Andrew Ng 교수님의 Machine Learning 강의(Coursera)를 정리한 내용입니다.
Exam 8에서 구현해야 하는 과제는 다음과 같습니다.
- estimateGaussian.m : 가우시안 분포를 갖는 모델의 평균과 분산을 반환하는 코드
- selectThreshold.m : Anomaly Detection에서의 최적의 Threshold를 찾는 코드
- cofiCostFunc.m : Collaborative filtering의 Cost Function 작성
[estimateGaussian.m]
가우시안 분포를 갖는 X 행렬의 평균과 분산을 구하면 됩니다. 평균과 분산을 구하는 공식은 아래와 같습니다.

전체 코드입니다.
function [mu sigma2] = estimateGaussian(X) %ESTIMATEGAUSSIAN This function estimates the parameters of a %Gaussian distribution using the data in X % [mu sigma2] = estimateGaussian(X), % The input X is the dataset with each n-dimensional data point in one row % The output is an n-dimensional vector mu, the mean of the data set % and the variances sigma^2, an n x 1 vector % % Useful variables [m, n] = size(X); % You should return these values correctly mu = zeros(n, 1); sigma2 = zeros(n, 1); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the mean of the data and the variances % In particular, mu(i) should contain the mean of % the data for the i-th feature and sigma2(i) % should contain variance of the i-th feature. % mu = (1/m)*sum(X', 2); sigma2 = (1/m)*sum((X' - mu).^2, 2); % ============================================================= end
[selectThreshold.m]
Anomaly Detection에서 최적의 Threshold를 찾는데, F1-score 방법을 사용해서 찾습니다.
F1-Score에 관한 자세한 내용은 아래 게시글을 참조하시길 바랍니다.
2020/08/20 - [ML and DL/Machine Learning] - [Machine Learning] Machine Learning System Design

위 그림처럼 True positive, False positive, False negative를 각각 구해서 precision, recall을 구해서 F1-Score를 구하면 됩니다.
전체코드는 다음과 같습니다.
function [bestEpsilon bestF1] = selectThreshold(yval, pval) %SELECTTHRESHOLD Find the best threshold (epsilon) to use for selecting %outliers % [bestEpsilon bestF1] = SELECTTHRESHOLD(yval, pval) finds the best % threshold to use for selecting outliers based on the results from a % validation set (pval) and the ground truth (yval). % bestEpsilon = 0; bestF1 = 0; F1 = 0; stepsize = (max(pval) - min(pval)) / 1000; for epsilon = min(pval):stepsize:max(pval) % ====================== YOUR CODE HERE ====================== % Instructions: Compute the F1 score of choosing epsilon as the % threshold and place the value in F1. The code at the % end of the loop will compare the F1 score for this % choice of epsilon and set it to be the best epsilon if % it is better than the current choice of epsilon. % % Note: You can use predictions = (pval < epsilon) to get a binary vector % of 0's and 1's of the outlier predictions % true-positive tp = sum(yval == 1 & pval < epsilon); % false-positive fp = sum(yval == 0 & pval < epsilon); % false-negative fn = sum(yval == 1 & pval >= epsilon); precison = tp / (tp + fp); recall = tp / (tp + fn); F1 = (2 * precison * recall) / (precison + recall); % ============================================================= if F1 > bestF1 bestF1 = F1; bestEpsilon = epsilon; end end end
true positive는 yval(실제 측정값)이 positive면서 예측값이 epsilon보다 작은(1으로 예측되는 것) 것의 개수이며, 나머지도 각 특성에 맞게 개수를 계산하였다.
[cofiCostFunc.m]
Collaborative filtering의 Cost Function을 작성하는 코드입니다. Cost Function은 다음과 같습니다.

그리고 J에 대해서 편미분한 식들은 다음과 같습니다.

전체 코드 입니다.
function [J, grad] = cofiCostFunc(params, Y, R, num_users, num_movies, ... num_features, lambda) %COFICOSTFUNC Collaborative filtering cost function % [J, grad] = COFICOSTFUNC(params, Y, R, num_users, num_movies, ... % num_features, lambda) returns the cost and gradient for the % collaborative filtering problem. % % Unfold the U and W matrices from params X = reshape(params(1:num_movies*num_features), num_movies, num_features); Theta = reshape(params(num_movies*num_features+1:end), ... num_users, num_features); % You need to return the following values correctly J = 0; X_grad = zeros(size(X)); Theta_grad = zeros(size(Theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost function and gradient for collaborative % filtering. Concretely, you should first implement the cost % function (without regularization) and make sure it is % matches our costs. After that, you should implement the % gradient and use the checkCostFunction routine to check % that the gradient is correct. Finally, you should implement % regularization. % % Notes: X - num_movies x num_features matrix of movie features % Theta - num_users x num_features matrix of user features % Y - num_movies x num_users matrix of user ratings of movies % R - num_movies x num_users matrix, where R(i, j) = 1 if the % i-th movie was rated by the j-th user % % You should set the following variables correctly: % % X_grad - num_movies x num_features matrix, containing the % partial derivatives w.r.t. to each element of X % Theta_grad - num_users x num_features matrix, containing the % partial derivatives w.r.t. to each element of Theta % error = X*Theta' - Y; J = (1/2)*sum(sum((error.*R).^2)) + lambda/2 * (sum(sum(Theta.^2)) + sum(sum(X.^2))); X_grad = (error.*R) * Theta + lambda * X; Theta_grad = (error.*R)' * X + lambda * Theta; % ============================================================= grad = [X_grad(:); Theta_grad(:)]; end
'Coursera 강의 > Machine Learning' 카테고리의 다른 글
[Coursera] Andrew Ng - Machine Learning 강의 요약 및 정리 (1) | 2020.09.16 |
---|---|
[Machine Learning] Gradient Descent with Large Datasets (0) | 2020.09.05 |
[Machine Learning] Recommender Systems (0) | 2020.09.04 |
[Machine Learning] Anomaly Detection (0) | 2020.09.02 |
[Machine Learning] Exam 7 (Week 8) (0) | 2020.08.27 |
댓글