해당 내용은 Andrew Ng 교수님의 Machine Learning 강의(Coursera)를 정리한 내용입니다.
Exam 8에서 구현해야 하는 과제는 다음과 같습니다.
- estimateGaussian.m : 가우시안 분포를 갖는 모델의 평균과 분산을 반환하는 코드
- selectThreshold.m : Anomaly Detection에서의 최적의 Threshold를 찾는 코드
- cofiCostFunc.m : Collaborative filtering의 Cost Function 작성
[estimateGaussian.m]
가우시안 분포를 갖는 X 행렬의 평균과 분산을 구하면 됩니다. 평균과 분산을 구하는 공식은 아래와 같습니다.
전체 코드입니다.
function [mu sigma2] = estimateGaussian(X)
%ESTIMATEGAUSSIAN This function estimates the parameters of a
%Gaussian distribution using the data in X
% [mu sigma2] = estimateGaussian(X),
% The input X is the dataset with each n-dimensional data point in one row
% The output is an n-dimensional vector mu, the mean of the data set
% and the variances sigma^2, an n x 1 vector
%
% Useful variables
[m, n] = size(X);
% You should return these values correctly
mu = zeros(n, 1);
sigma2 = zeros(n, 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the mean of the data and the variances
% In particular, mu(i) should contain the mean of
% the data for the i-th feature and sigma2(i)
% should contain variance of the i-th feature.
%
mu = (1/m)*sum(X', 2);
sigma2 = (1/m)*sum((X' - mu).^2, 2);
% =============================================================
end
[selectThreshold.m]
Anomaly Detection에서 최적의 Threshold를 찾는데, F1-score 방법을 사용해서 찾습니다.
F1-Score에 관한 자세한 내용은 아래 게시글을 참조하시길 바랍니다.
2020/08/20 - [ML and DL/Machine Learning] - [Machine Learning] Machine Learning System Design
위 그림처럼 True positive, False positive, False negative를 각각 구해서 precision, recall을 구해서 F1-Score를 구하면 됩니다.
전체코드는 다음과 같습니다.
function [bestEpsilon bestF1] = selectThreshold(yval, pval)
%SELECTTHRESHOLD Find the best threshold (epsilon) to use for selecting
%outliers
% [bestEpsilon bestF1] = SELECTTHRESHOLD(yval, pval) finds the best
% threshold to use for selecting outliers based on the results from a
% validation set (pval) and the ground truth (yval).
%
bestEpsilon = 0;
bestF1 = 0;
F1 = 0;
stepsize = (max(pval) - min(pval)) / 1000;
for epsilon = min(pval):stepsize:max(pval)
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the F1 score of choosing epsilon as the
% threshold and place the value in F1. The code at the
% end of the loop will compare the F1 score for this
% choice of epsilon and set it to be the best epsilon if
% it is better than the current choice of epsilon.
%
% Note: You can use predictions = (pval < epsilon) to get a binary vector
% of 0's and 1's of the outlier predictions
% true-positive
tp = sum(yval == 1 & pval < epsilon);
% false-positive
fp = sum(yval == 0 & pval < epsilon);
% false-negative
fn = sum(yval == 1 & pval >= epsilon);
precison = tp / (tp + fp);
recall = tp / (tp + fn);
F1 = (2 * precison * recall) / (precison + recall);
% =============================================================
if F1 > bestF1
bestF1 = F1;
bestEpsilon = epsilon;
end
end
end
true positive는 yval(실제 측정값)이 positive면서 예측값이 epsilon보다 작은(1으로 예측되는 것) 것의 개수이며, 나머지도 각 특성에 맞게 개수를 계산하였다.
[cofiCostFunc.m]
Collaborative filtering의 Cost Function을 작성하는 코드입니다. Cost Function은 다음과 같습니다.
그리고 J에 대해서 편미분한 식들은 다음과 같습니다.
전체 코드 입니다.
function [J, grad] = cofiCostFunc(params, Y, R, num_users, num_movies, ...
num_features, lambda)
%COFICOSTFUNC Collaborative filtering cost function
% [J, grad] = COFICOSTFUNC(params, Y, R, num_users, num_movies, ...
% num_features, lambda) returns the cost and gradient for the
% collaborative filtering problem.
%
% Unfold the U and W matrices from params
X = reshape(params(1:num_movies*num_features), num_movies, num_features);
Theta = reshape(params(num_movies*num_features+1:end), ...
num_users, num_features);
% You need to return the following values correctly
J = 0;
X_grad = zeros(size(X));
Theta_grad = zeros(size(Theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost function and gradient for collaborative
% filtering. Concretely, you should first implement the cost
% function (without regularization) and make sure it is
% matches our costs. After that, you should implement the
% gradient and use the checkCostFunction routine to check
% that the gradient is correct. Finally, you should implement
% regularization.
%
% Notes: X - num_movies x num_features matrix of movie features
% Theta - num_users x num_features matrix of user features
% Y - num_movies x num_users matrix of user ratings of movies
% R - num_movies x num_users matrix, where R(i, j) = 1 if the
% i-th movie was rated by the j-th user
%
% You should set the following variables correctly:
%
% X_grad - num_movies x num_features matrix, containing the
% partial derivatives w.r.t. to each element of X
% Theta_grad - num_users x num_features matrix, containing the
% partial derivatives w.r.t. to each element of Theta
%
error = X*Theta' - Y;
J = (1/2)*sum(sum((error.*R).^2)) + lambda/2 * (sum(sum(Theta.^2)) + sum(sum(X.^2)));
X_grad = (error.*R) * Theta + lambda * X;
Theta_grad = (error.*R)' * X + lambda * Theta;
% =============================================================
grad = [X_grad(:); Theta_grad(:)];
end
'Coursera 강의 > Machine Learning' 카테고리의 다른 글
[Coursera] Andrew Ng - Machine Learning 강의 요약 및 정리 (1) | 2020.09.16 |
---|---|
[Machine Learning] Gradient Descent with Large Datasets (0) | 2020.09.05 |
[Machine Learning] Recommender Systems (0) | 2020.09.04 |
[Machine Learning] Anomaly Detection (0) | 2020.09.02 |
[Machine Learning] Exam 7 (Week 8) (0) | 2020.08.27 |
댓글