LSTM4 [tensorflow] RNN에 사용되는 layer (tensorflow v2.4.0) RNN 모델에 사용하는 tensorflow의 layer에 대해서 알아보도록 하겠습니다. import numpy as np import tensorflow as tf 1. Simple RNN layer tensorflow에서 Simple RNN은 아래의 API로 사용할 수 있습니다. tf.keras.layers.SimpleRNN 이번글에서 파라미터로는 units, activation, return_sequences를 사용할 예정이며, units은 output의 차원이며, return_sequences는 RNN에서 마지막 output 시퀀스에서만 결과를 출력할 지, 아니면 모든 시퀀스에서 결과를 출력할 지에 대한 여부를 나타냅니다. 주로 여러 개의 RNN layer를 쌓을.. 2020. 12. 22. [실습] Building a RNN step by step(Basic RNN, LSTM) 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 다섯 번째 강의 Recurrent Neural Network를 듣고 정리한 내용입니다. (Week 1) RNN 1주차 실습은 Simple RNN, LSTM, GRU를 Step by step으로 구현해보는 것입니다. 그리고 다음 실습에서 이렇게 구현한 함수들을 통해서 Music generator를 구현해보도록 할 예정입니다. 실습에 들어가기 전에 Notation부터 설명하겠습니다. 위첨자 [l]은 \(l^{th}\) layer를 의미함 위첨자 (i)는 \(i^{th}\) sample data를 의미함 위첨자 는 \(t^{th}\) time-step을 의미함 아래첨자 i는 벡터의 \(i^{th}\) 요소를 .. 2020. 12. 21. Recurrent Neural Networks 2 (GRU, LSTM, BRNN) 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 다섯 번째 강의 Recurrent Neural Network를 듣고 정리한 내용입니다. (Week 1) [Gated Recurrent Unit(GRU)] 앞서 Basic RNN이 어떻게 동작하는지 살펴보았고, 이번에는 GRU라는 조금 더 긴 시퀀스를 잘 캡처(장기의존성 문제)하고, Vanishing Gradient 문제를 해소할 수 있는 GRU에 대해서 살펴보도록 하자. GRU는 다음에 나오는 LSTM과 유사하지만, 조금 더 간략한 구조를 가지고 있다. GRU를 간단하게 표현하면 위와 같다. 여기서 새롭게 나타나는 c는 memory cell을 의미하며 이전 정보들이 저장되는 공간이다. 이전 정보가 \(c.. 2020. 12. 21. Recurrent Neural Networks 1 (Basic of RNN model) 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 다섯 번째 강의 Sequence Models를 듣고 정리한 내용입니다. (Week 1) [Why sequence models] 다섯번째 강의에서는 Sequence model에 대해서 배운다. 딥러닝에서 가장 흥미로운 분야 중 하나이며, Recurrent Neural Network(RNN)같은 모델은 음성 인식, 자연어 처리(NLP) 영역에 영향을 끼쳤다. 아래는 시퀀스 모델이 사용되는 몇 가지 예시들이다. 음성 인식(Speech recognition)의 경우에는 Input X인 오디오가 Text output Y에 매핑된다. 입력과 출력 모두 시퀀스 데이터인데, X는 시간에 따라 재생되는 음성이며, Y는 .. 2020. 12. 20. 이전 1 다음