training-dev set1 ML Strategy 2-1 (Error Analysis, Data mismatched) 해당 내용은 Coursera의 딥러닝 특화과정(Deep Learning Specialization)의 세 번째 강의 Structuring Machine Learning Projects를 듣고 정리한 내용입니다. (Week 2) - Error Analysis [Carrying out error analysis] 학습 알고리즘을 개발하면서 아직 학습 알고리즘이 인간레벨 수준의 성능에 미치지 못한다면, 수작업으로 알고리즘의 error들을 점검하는 것이 도움이 될 수 있다. 이런 프로세스를 Error Analysis라고 한다. 고양이 판별기를 예제로 살펴보도록 하자. 고양이를 분류하기 위한 학습 알고리즘을 개발하고 있고, 그 결과 90%의 정확도에 도달했다고 가정한다면, dev set에서 10%의 error를 .. 2020. 10. 28. 이전 1 다음